[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Registration ::
Main Menu
Home::
Journal Information::
Articles archive::
Submission Instruction::
Registration::
Submit article::
Site Facilities::
Contact us::
::
Google Scholar

Citation Indices from GS

Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
:: Search published articles ::
Showing 1 results for Askari

Dr Elham Askari,
Volume 16, Issue 1 (3-2025)
Abstract

Emotion recognition in Persian texts using data mining is a significant area within text analysis. Emotions are typically defined as individuals’ emotional reactions to situations, events, and information. Emotion recognition in text involves identifying and analyzing emotional content across various types of textual data. This paper presents a model for detecting different emotions in Persian texts using an enhanced transfer model. The proposed model comprises an encoder and a decoder, each equipped with a self-attention mechanism and RNN modules. Initially, a dataset of sentences annotated with emotional states—anger, happiness, sadness, and fear—is created by multiple users. These sentences are then converted into image representations and fed into the improved transfer model for emotion recognition. Experimental results demonstrate that the model effectively identifies the emotions of sadness, anger, happiness, and surprise with precision, accuracy, recall, and F1-score values of 90.25%, 91.4%, 91.6%, and 90.80%, respectively.
 

Page 1 from 1     

مجله انجمن ایرانی تحقیق در عملیات Iranian Journal of Operations Research
Persian site map - English site map - Created in 0.06 seconds with 27 queries by YEKTAWEB 4722