[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Registration ::
Main Menu
Home::
Journal Information::
Articles archive::
Submission Instruction::
Registration::
Submit article::
Site Facilities::
Contact us::
::
Google Scholar

Citation Indices from GS

AllSince 2019
Citations85883619
h-index127
i10-index136

Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
:: Search published articles ::
Showing 2 results for Taheri

Dr. Adil Bagirov, Dr. Sona Taheri,
Volume 8, Issue 2 (5-2017)
Abstract

Clustering problems with the similarity measure defined by the $𝐿_1$-norm are studied. Characterizations of different stationary points of these problems are given using their difference of convex representations. An algorithm for finding the Clarke stationary points of the clustering problems is designed and a clustering algorithm is developed based on it. The clustering algorithm finds a center of a data set at the first iteration and gradually adds one cluster center at each consecutive iteration. The proposed algorithm is tested using large real world data sets and compared with other clustering algorithms.
Mr. Aria Soleimani Kourandeh, Dr. Jafar Fathali , Mrs Sara Taherifard ,
Volume 12, Issue 1 (6-2021)
Abstract

Location theory is one of the most important topics in optimization and operations research. In location problems, the goal is to find the location of one or more facilities in a way such that some criteria such as transportation costs, customer traveling distance, total service time, and cost of servicing are optimized. In this paper, we investigate the goal Weber location problem in which the location of a number of demand points on a plane is given, and the ideal is locating the facility in the distance Ri , from the i-th demand point. However, in most instances, the solution of this problem does not exist. Therefore, the minimizing sum of errors is considered. The goal Weber location problem with the lp  norm is solved using the stochastic version of the LBFGS method, which is a second-order limited memory method for minimizing large-scale problems. According to the obtained numerical results, this algorithm achieves a lower optimal value in less time with comparing to other common and popular stochastic optimization algorithms. Note that although the investigated problem is not strongly convex, the numerical results show that the SLBFGS algorithm performs very well even for this type of problem.
 

Page 1 from 1     

مجله انجمن ایرانی تحقیق در عملیات Iranian Journal of Operations Research
Persian site map - English site map - Created in 0.07 seconds with 28 queries by YEKTAWEB 4645