[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Registration ::
Main Menu
Home::
Journal Information::
Articles archive::
Submission Instruction::
Registration::
Submit article::
Site Facilities::
Contact us::
::
Google Scholar

Citation Indices from GS

AllSince 2019
Citations85883619
h-index127
i10-index136

Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
:: Search published articles ::
Showing 2 results for Scalarization

Dr. Mehdi Foumani, Dr. Reza Tavakkoli Moghaddam,
Volume 10, Issue 1 (7-2019)
Abstract

This paper analyzes the performance of a robotic system with two machines in which machines are configured in a circular layout and produce non-identical parts repetitively. The non-destructive testing (NDT) is performed by a stationary robotic arm located in the center of the circle, or a cluster tool. The robotic arm integrates multiple tasks, mainly the NDT of the part and its transition between a pair of machines. The robotic arm cannot complete the transition if it identifies a fault in the part. The main feature of the NDT technology is that its required time is changed by altering the testing cost. This generates a trade-off between cost and cycle time. Initially, the problem of robotic arm scheduling and part sequencing is jointly solved to supports the decision making for reliability improvement of small-scale robotic systems with NDT technologies. We show how the case of non-identical parts can be converted into a travelling salesman problem (TSP). Then, we provide a generalization of the framework based on three characteristics: pickup criterion, layout and travel time metric. The results are extended for the interval and no-wait pickup criteria, and then some notes are provided for travel time saving of different layout and travel time metric. It is shown whether circular systems are equivalent to linear systems, or they dominate linear cases in general terms.
Dr. Mehrdad Ghaznavi, Mrs. Mahboobe Abkhizi,
Volume 10, Issue 2 (9-2019)
Abstract

Here, scalarization techniques for multi-objective optimization problems are addressed. A new scalarization approach, called unified Pascoletti-Serafini approach, is utilized and a new algorithm to construct the Pareto front of a given bi-objective optimization problem is formulated. It is shown that we can restrict the parameters of the scalarized problem. The computed efficient points provide a nearly equidistant approximation of the whole Pareto front. The performance of the proposed algorithm is illustrated by various test problems and its effectiveness with respect to some existing methods is shown.

Page 1 from 1     

مجله انجمن ایرانی تحقیق در عملیات Iranian Journal of Operations Research
Persian site map - English site map - Created in 0.05 seconds with 28 queries by YEKTAWEB 4645