[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Registration ::
Main Menu
Home::
Journal Information::
Articles archive::
Submission Instruction::
Registration::
Submit article::
Site Facilities::
Contact us::
::
Google Scholar

Citation Indices from GS

AllSince 2019
Citations85983625
h-index127
i10-index136

Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
:: Search published articles ::
Showing 5 results for Interior-Point Method

Salahi,
Volume 2, Issue 2 (6-2011)
Abstract

  Semidefinite optimization relaxations are among the widely used approaches to find global optimal or approximate solutions for many nonconvex problems. Here, we consider a specific quadratically constrained quadratic problem with an additional linear constraint. We prove that under certain conditions the semidefinite relaxation approach enables us to find a global optimal solution of the underlying problem in polynomial time .


Mansouri, Siyavash, Zangiabadi,
Volume 3, Issue 1 (4-2012)
Abstract

We present a new algorithm obtained by changing the search directions in the algorithm given in [8]. This algorithm is based on a new technique for finding the search direction and the strategy of the central path. At each iteration, we use only the full Nesterov-Todd (NT)step. Moreover, we obtain the currently best known iteration bound for the infeasible interior-point algorithms with full NT steps, namely O(nlogn/e) , which is as good as the linear analogue.
Bai, Lesaja, Mansouri, Roos, Zangiabadi,
Volume 3, Issue 2 (9-2012)
Abstract

 Many efficient interior-point methods (IPMs) are based on the use of a self-concordant barrier function for the domain of the problem that has to be solved. Recently, a wide class of new barrier functions has been introduced in which the functions are not self-concordant, but despite this fact give rise to efficient IPMs. Here, we introduce the notion of locally self-concordant barrier functions and we prove that the new barrier functions are locally self-concordant. In many cases, the (local) complexity numbers of the new barrier functions along the central path are better than the complexity number of the logarithmic barrier function by a factor between 0.5 and 1.
Dr. Behrouz Kheirfam,
Volume 6, Issue 2 (9-2015)
Abstract

In this paper, we propose an arc-search corrector-predictor
interior-point method for solving $P_*(kappa)$-linear
complementarity problems. The proposed algorithm searches the
optimizers along an ellipse that is an approximation of the central
path. The algorithm generates a sequence of iterates in the wide
neighborhood of central path introduced by Ai and Zhang. The
algorithm does not depend on the handicap $kappa$ of the problem,
so that it can be used for any $P_*(kappa)$-linear complementarity
problem. Based on the ellipse approximation of the central path and
the wide neighborhood, we show that the proposed algorithm has
$O((1+kappa)sqrt{n}L)$ iteration complexity, the best-known
iteration complexity obtained so far by any interior-point method
for solving $P_*(kappa)$-linear complementarity problems.


Miss Hadis Abedi , Prof Behrouz Kheirfam,
Volume 12, Issue 2 (11-2021)
Abstract

In this paper, we present a new primal-dual predictor-corrector interior-point algorithm for linear optimization problems. In each iteration of this algorithm, we use the new wide neighborhood proposed by Darvay and Takács. Our algorithm computes the predictor direction, then the predictor direction is used to obtain the corrector direction. We show that the duality gap reduces in both predictor and corrector steps. Moreover, we conclude that the complexity bound of this algorithm coincides with the best-known complexity bound obtained for small neighborhood algorithms. Eventually, numerical results show the capability and efficiency of the proposed algorithm.

Page 1 from 1     

مجله انجمن ایرانی تحقیق در عملیات Iranian Journal of Operations Research
Persian site map - English site map - Created in 0.06 seconds with 31 queries by YEKTAWEB 4645