[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Registration ::
Main Menu
Journal Information::
Articles archive::
Submission Instruction::
Submit article::
Site Facilities::
Contact us::
Google Scholar

Citation Indices from GS

AllSince 2015

Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
:: Search published articles ::
Showing 1 results for Izadi

Izadi, Ranjbarian, Ketabi, Nassiri-Mofakham,
Volume 4, Issue 1 (5-2013)

  Among various statistical and data mining discriminant analysis proposed so far for group classification, linear programming discriminant analysis has recently attracted the researchers’ interest. This study evaluates multi-group discriminant linear programming (MDLP) for classification problems against well-known methods such as neural networks and support vector machine. MDLP is less complicated as compared to other methods and does not suffer from having local optima. This study also proposes a fuzzy Delphi method to select and gather the required data, when databases suffer from deficient data. In addition, to absorb the uncertainty infused to collecting data, interval MDLP (IMDLP) is developed. The results show that the performance of MDLP and specially IMDLP is better than conventional classification methods with respect to correct classification, at least for small and medium-size datasets.

Page 1 from 1     

مجله انجمن ایرانی تحقیق در عملیات Iranian Journal of Operations Research
Persian site map - English site map - Created in 0.05 seconds with 29 queries by YEKTAWEB 4162