[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Registration ::
Main Menu
Journal Information::
Articles archive::
Submission Instruction::
Submit article::
Site Facilities::
Contact us::
Google Scholar

Citation Indices from GS

AllSince 2016

Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
:: Search published articles ::
Showing 2 results for Robust Optimization

Dr Yahia Zare Mehrjerdi, Mitra Moubed,
Volume 6, Issue 1 (3-2015)

This paper proposes a robust model for optimizing collaborative reverse supply chains. The primary idea is to develop a collaborative framework that can achieve the best solutions in the uncertain environment. Firstly, we model the exact problem in the form of a mixed integer nonlinear programming. To regard uncertainty, the robust optimization is employed that searches for an optimum answer with nearly all possible deviations in mind. In order to allow the decision maker to vary the protection level, we used the "budget of uncertainty" approach. To solve the np-hard problem, we suggest a hybrid heuristic algorithm combining dynamic programming, ant colony optimization and tabu search. To confirm the performance of the algorithm, two validity tests are done firstly by comparing with the previously solved problems and next by solving a sample problem with more than 900 combinations of parameters and comparing the results with the nominal case. In conclusion, the results of different combinations and prices of robustness are compared and some directions for future researches are suggested finally.

Mr. M. Namakshenas, Dr. Mir Saman Pishvaee, Dr. M. Mahdavi Mazdeh,
Volume 8, Issue 1 (4-2017)

Over five decades have passed since the first wave of robust optimization studies conducted by Soyster and Falk. It is outstanding that real-life applications of robust optimization are still swept aside; there is much more potential for investigating the exact nature of uncertainties to obtain intelligent robust models. For this purpose, in this study, we investigate a more refined description of the uncertain events including (1) event-driven and (2) attribute-driven. Classical methods transform convex programming classes of uncertainty sets. The structural properties of uncertain events are analyzed to obtain a more refined description of the uncertainty polytopes. Hence, tractable robust models with a decent degree of conservatism are introduced to avoid the over-protection induced by classical uncertainty sets.

Page 1 from 1     

مجله انجمن ایرانی تحقیق در عملیات Iranian Journal of Operations Research
Persian site map - English site map - Created in 0.05 seconds with 28 queries by YEKTAWEB 4256