|
|
|
 |
Search published articles |
 |
|
Showing 2 results for Multi-Objective Optimization
Mr. Hassan Heidari-Fathian, Dr. Seyyed Hamid Reza Pasandideh, Volume 8, Issue 1 (4-2017)
Abstract
A multi-periodic, multi-echelon green supply chain network consisting of manufacturing plants, potential distribution centers, and customers is developed. The manufacturing plants can provide the products in three modes including production in regular time, production in over time, or by subcontracting. The problem has three objectives including minimization of the total costs of the green supply chain network, maximization of the average safe inventory levels of the manufacturing plants and the distribution centers and minimization of the environmental impacts of the manufacturing plants in producing, holding and dispatching the products and also the environmental impacts of the distribution centers in holding and dispatching the products. The problem is first formulated as a mixed-integer mathematical model. Then, in order to solve the model, the augmented weighted Tchebycheff method is employed and its performance in producing the Pareto optimal solutions is compared with the goal attainment method.
Dr Mohammad Mohammadi, Dr Davood Darvishi, Volume 16, Issue 1 (3-2025)
Abstract
Prostate cancer is the most common cancer in men and the second leading cause of cancer-related death worldwide. Over the years, researchers from various fields, beyond medicine, have sought to expand their understanding of the disease to develop more effective treatments. Treatment planning for high-dose-rate (HDR) brachytherapy involves designing the trajectory of the radiation source to deliver sufficient doses to the target area while minimizing exposure to surrounding organs at risk (OAR) within clinically safe limits. Since the exact tumor volume is not known, the model uses gray numbers instead of tumor volume, which provides more accurate results.
In this study, four powerful multi-objective evolutionary algorithms (MOEAs) NSGA1-II, PESA2-II, SPEA3-II, and MOPSO4 are employed. Instead of yielding a single best solution, these algorithms produce a set of Pareto-optimal solutions, each representing a trade-off where no one solution is definitively better than the rest. However, they demonstrate improved performance compared to other optimization methods. The results show that the MOPSO algorithm performs better than the other three powerful algorithms in terms of solution quality and maintaining diversity among solutions.
|
|
|
|
|
|