|
|
|
|
Search published articles |
|
|
Showing 2 results for Nonsmooth Optimization
A.m. Bagirov, Volume 5, Issue 1 (5-2014)
Abstract
Here, an algorithm is presented for solving the minimum sum-of-squares clustering problems using their difference of convex representations. The proposed algorithm is based on an incremental approach and applies the well known DC algorithm at each iteration. The proposed algorithm is tested and compared with other clustering algorithms using large real world data sets.
Dr. Adil Bagirov, Dr. Sona Taheri, Volume 8, Issue 2 (5-2017)
Abstract
Clustering problems with the similarity measure defined by the $𝐿_1$-norm are studied. Characterizations of different stationary points of these problems are given using their difference of convex representations. An algorithm for finding the Clarke stationary points of the clustering problems is designed and a clustering algorithm is developed based on it. The clustering algorithm finds a center of a data set at the first iteration and gradually adds one cluster center at each consecutive iteration. The proposed algorithm is tested using large real world data sets and compared with other clustering algorithms.
|
|
|
|
|
|