Islamic Azad University , amir.mohajeri@iauctb.ac.ir
Abstract: (15028 Views)
A genetic algorithm is proposed to optimize a tree-structured power distribution network considering optimal cable sizing. For minimizing the total cost of the network, a mixed-integer programming model is presented determining the optimal sizes of cables with minimized location-allocation cost. For designing the distribution lines in a power network, the primary factors must be considered as maximum allowable electrical flow in cables, permitted length of cables, maximum permitted voltage drops, and balance of load. The relationship between rates of electric current and cable sizes with consideration of constraints such as voltage drops and length are our essential data. To create a network with a minimum number of arcs and no closed loop such that all the nodes are covered, a minimum spanning tree technique is utilized. Here, we solve the problem using a genetic optimization algorithm and apply the offered approach to a real problem. By comparing the two extracted results from the proposed approach and an exact method, effectiveness of the genetic algorithm for optimization of power distribution network is shown. To demonstrate the validity of the offered model, a case study in Tehran power distribution company in Iran is made.